China manufacturer Cast Iron Elastic Shaft Coupling Flexible Jaw Couplings with Rubber Motor Couplings motor coupling

Product Description

                                   Cast Iron Elastic Shaft Coupling Flexible Jaw Couplings with Rubber Motor Couplings
 

Product Description

 

 

Service CNC Machining
Turning and Milling
CNC Turning
OEM Parts
Material 1). Aluminum: AL 6061-T6, 6063, 7075-T etc
2). Stainless steel: 303,304,316L, 17-4(SUS630) etc
3). Steel: 4140, Q235, Q345B,20#,45# etc.
4). Titanium: TA1,TA2/GR2, TA4/GR5, TC4, TC18 etc
5). Brass: C36000 (HPb62), C37700 (HPb59), C26800 (H68), C22000(H90) etc
6). Copper, bronze, Magnesium alloy, Delrin, POM,Acrylic, PC, etc.
Finish Sandblasting, Anodize color, Blackenning, Zinc/Nickl Plating, Polish, 
Power coating, Passivation PVD, Titanium Plating, Electrogalvanizing,
electroplating chromium, electrophoresis, QPQ(Quench-Polish-Quench),
Electro Polishing,Chrome Plating, Knurl, Laser etch Logo, etc.
Main Equipment CNC Machining center(Milling), CNC Lathe, Grinding machine, 
Cylindrical grinder machine, Drilling machine, Laser Cutting Machine,etc.
Drawing format STEP,STP,GIS,CAD,PDF,DWG,DXF etc or samples. 
Tolerance +/-0.01mm ~ +/-0.05mm
Surface roughness Ra 0.1~3.2
Inspection Complete inspection lab with Micrometer, Optical Comparator, Caliper Vernier,CMM
Depth Caliper Vernier, Universal Protractor, Clock Gauge, Internal Centigrade Gauge
Capacity CNC turning work range: φ0.5mm-φ150mm*300mm
CNC milling work range: 510mm*1571mm*500mm

       Features of jaw coupling:

      1.Easy of inspection,easy maintenance.

      2.Can absorb vibration,parallel,angular and axial misalignments. 

      3.Identical clockwise and anticlockwise rotational charateristics.

      4.Both ends material is iron, intermediate for rubber materials.

      5.Simple configuration, setscrew type,low price.

      6.Hole can be self-processing,easy facilitate.

      7.For step motor,screw, machine positioning system.

     The SL cross slide coupling is slid in the corresponding radial grooves of the large end faces
     of the half couplings on both sides.
     The main feature of the slider coupling is that it allows the 2 shafts to have a large radial
     displacement, and allows for small angular displacement and axial displacement. Due to the
     centrifugal force generated by the eccentric motion of the slider, it is not suitable to use this
     coupling. High-speed movement, the coupling torque of the coupling is 120-63000N.m, the
     speed is 250-70r/min.

     Inspections:
     3D instruments, 2D instruments, Projectors, Height Gauges, Inner diameter dial indicators, Dial gaues, Thread 
     and Pin gauges, Digital calipers,Micro calipers, Thickness testers, Hardness testers Roughness testers, etc.
      ( Detection accuracy to 0.001 millimetre )

 

     Advantages:

     Protects driven component by serving as a mechanical “fuse” – an inexpensive replaceable plastic
     midsection shears under excess load.
     Protects support bearings by exerting consistently low reactive forces, even under large misalignments.
     Homokinetic transmission – driving and driven shafts rotate at exactly the same speed at all times.
     Zero backlash and high torsional stiffness.
     Accommodates large radial misalignment in a short length.
     Easy installation in blind or difficult installations when through-bores are used.
     Economically priced compared to other couplings with similar performance characteristics.

     CNC machining parts, metal machining parts, precision machining parts, Machined parts, Machinery 
     parts,Machine Parts,machining parts machining,Cnc machining parts machinery parts,machined 
     parts,precision machining parts,oem machining parts,cnc machining parts,cnc machined parts.

               Q: Why choose Shengao product?
               A: We shengao have our own plant– HangZhou Shengao machinery Co.,Ltd, therefore, we can 
               surely promise the quality of every product and provide you comparable price.

               Q: Do you provide OEM Service?
               A: Yes, we provide OEM Service.

               Q: Do you provide customized machining parts?
               A: Yes. Customers give us drawings and specifications, and we will manufact accordingly.

               Q: What is your payment term?
               A: We provide kinds of payment terms such as L/C, T/T, Paypal, Escrow, etc.

               If there’s anything we can help, please feel free to contact with us. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

motor coupling

Best Practices for Installing a Motor Coupling for Optimal Performance

Proper installation of a motor coupling is essential to ensure optimal performance and reliability of the power transmission system. Follow these best practices when installing a motor coupling:

1. Correctly Match Coupling Type:

Select a motor coupling type that is suitable for the specific application and operating conditions. Consider factors like torque requirements, misalignment tolerance, and environmental factors when choosing the coupling.

2. Ensure Proper Alignment:

Achieve precise alignment between the motor and driven equipment shafts before installing the coupling. Misalignment can lead to premature wear and reduced efficiency.

3. Check Shaft Endplay:

Verify that the shafts have the correct endplay to allow for thermal expansion and contraction. Inadequate endplay can lead to binding or increased stress on the coupling and connected components.

4. Clean Shaft Surfaces:

Ensure that the shaft surfaces are clean and free of any debris or contaminants before installing the coupling. Clean surfaces promote proper coupling engagement and reduce the risk of slippage.

5. Use Correct Coupling Fasteners:

Use the specified fasteners, such as bolts or set screws, provided by the coupling manufacturer. Tighten the fasteners to the recommended torque values to secure the coupling properly.

6. Verify Keyway Alignment:

If the coupling has a keyway, ensure that it aligns correctly with the key on the motor and driven equipment shafts. Proper keyway alignment prevents rotational slippage and ensures efficient torque transmission.

7. Lubrication:

If the coupling requires lubrication, apply the appropriate lubricant as recommended by the manufacturer. Proper lubrication reduces friction and wear on coupling components.

8. Perform Trial Run:

Before putting the system into full operation, perform a trial run to check for any abnormalities or vibrations. Monitor coupling performance and check for leaks, noises, or other signs of issues.

9. Regular Inspection and Maintenance:

Conduct regular inspections and maintenance on the motor coupling and the entire power transmission system. Check for wear, alignment, and any signs of damage, and address any issues promptly.

10. Follow Manufacturer Guidelines:

Always follow the manufacturer’s installation guidelines and recommendations for the specific coupling model. Manufacturer guidelines provide essential information for optimal performance and safe operation.

By adhering to these best practices, you can ensure that the motor coupling functions efficiently and contributes to the overall performance and reliability of the mechanical system.

“`motor coupling

Temperature and Speed Limits for Different Motor Coupling Types

Motor couplings come in various types, and each type has its temperature and speed limits. These limits are essential considerations to ensure the coupling operates safely and efficiently. Here are the general temperature and speed limits for different motor coupling types:

1. Elastomeric Couplings:

Elastomeric couplings, such as jaw couplings and spider couplings, are commonly used in a wide range of applications. They typically have temperature limits of approximately -40°C to 100°C (-40°F to 212°F). The speed limits for elastomeric couplings typically range from 3,000 to 6,000 RPM, depending on the specific coupling design and size.

2. Gear Couplings:

Gear couplings are known for their high torque capacity and durability. The temperature limits for gear couplings are usually between -50°C to 150°C (-58°F to 302°F). The speed limits for gear couplings can be as high as 5,000 to 10,000 RPM or more, depending on the size and design.

3. Disc Couplings:

Disc couplings provide high torsional stiffness and are often used in precision applications. The temperature limits for disc couplings are typically around -40°C to 200°C (-40°F to 392°F). The speed limits for disc couplings can range from 5,000 to 20,000 RPM or more.

4. Grid Couplings:

Grid couplings are known for their shock absorption capabilities. The temperature limits for grid couplings are usually between -30°C to 100°C (-22°F to 212°F). The speed limits for grid couplings typically range from 3,600 to 5,000 RPM.

5. Oldham Couplings:

Oldham couplings are often used to transmit motion between shafts with significant misalignment. The temperature limits for Oldham couplings are generally around -30°C to 80°C (-22°F to 176°F). The speed limits for Oldham couplings are usually up to 3,000 to 5,000 RPM.

6. Diaphragm Couplings:

Diaphragm couplings are suitable for applications requiring high precision and torque transmission. The temperature limits for diaphragm couplings are typically between -50°C to 300°C (-58°F to 572°F). The speed limits for diaphragm couplings can be as high as 10,000 to 30,000 RPM.

It is essential to check the manufacturer’s specifications and recommendations for the specific coupling model to ensure the coupling operates within its intended temperature and speed limits. Operating the coupling beyond these limits may lead to premature wear, reduced performance, or even catastrophic failure. Properly selecting a coupling that matches the application’s temperature and speed requirements is critical for reliable and safe operation.

“`motor coupling

What is a Motor Coupling and its Role in Connecting Motors to Driven Equipment?

A motor coupling is a mechanical device used to connect an electric motor to driven equipment, such as pumps, compressors, conveyors, and other machinery. Its primary role is to transmit torque from the motor to the driven equipment, allowing the motor to drive and control the operation of the connected machinery.

Function of a Motor Coupling:

The motor coupling serves several essential functions in the overall mechanical system:

1. Torque Transmission:

The main function of a motor coupling is to transfer torque from the motor shaft to the shaft of the driven equipment. As the motor rotates, it generates torque that needs to be efficiently transmitted to the machinery to produce the desired motion or work.

2. Misalignment Compensation:

Motor couplings can accommodate a certain degree of misalignment between the motor and driven equipment shafts. Misalignment may occur due to manufacturing tolerances, installation errors, or operational conditions. The coupling’s flexibility helps reduce stress on the motor and driven equipment’s bearings and prolongs their life.

3. Vibration Damping:

Some motor couplings, particularly those with flexible elements like elastomeric or rubber components, can dampen vibrations generated during motor operation. Vibration damping improves the overall system’s performance and reduces wear on connected components.

4. Overload Protection:

Motor couplings can act as a safety feature by providing overload protection to the connected machinery. In certain coupling designs, a shear pin or a similar mechanism may break under excessive load or torque, preventing damage to the motor or driven equipment.

5. Noise Reduction:

Well-designed motor couplings can help reduce noise and resonance in the system. By absorbing vibrations and minimizing backlash, the coupling contributes to quieter and smoother operation.

6. Efficiency and Reliability:

A properly selected and installed motor coupling improves the overall efficiency and reliability of the mechanical system. It ensures that the motor’s power is effectively transmitted to the driven equipment, resulting in smoother operation and reduced energy losses.

Motor couplings come in various types, including rigid couplings, flexible couplings, gear couplings, and more, each designed to suit specific applications and operating conditions. Selecting the appropriate coupling type is crucial to ensure optimal performance, prolonged equipment life, and enhanced safety in motor-driven systems.

“`
China manufacturer Cast Iron Elastic Shaft Coupling Flexible Jaw Couplings with Rubber Motor Couplings   motor couplingChina manufacturer Cast Iron Elastic Shaft Coupling Flexible Jaw Couplings with Rubber Motor Couplings   motor coupling
editor by CX 2024-03-08

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *